Combined assessment of serum folate and hemoglobin as biomarkers of brain amyloid β accumulation
نویسندگان
چکیده
A relationship between Alzheimer's disease (AD) and folate has been reported. Amyloid positron emission tomography (PET) is currently one of the most reliable biomarkers for AD. We investigated the correlation between serum folate levels and amyloid imaging to clarify whether serum folate could be a biomarker for AD. We also examined the usefulness of a combined assessment of serum folate levels and red blood cell hemoglobin content. Apolipoprotein E (APOE) gene polymorphisms were also assessed. Serum folate levels and hemoglobin content were evaluated by receiver operating characteristic analysis for their diagnostic capability as AD biomarkers relating to brain amyloid β accumulation. The area under the ROC curve (AUC) for serum folate was 0.136 (95% confidence interval [CI]: 0.000-0.312; p = 0.016). The AUC for hemoglobin content was 0.848 (95% CI: 0.661-1.000; p = 0.021). Therefore, the folate deficiency with low folate levels or the non-anaemia with high hemoglobin content levels were found to have a high probability of also testing positive for amyloid. Furthermore, eight patients were found to be folate deficiency and non-anaemia, those who were consist of 7 amyloid positive patients (87.5%), and only one of the amyloid negative patients (12.5%). These results suggest that a deficiency of serum folate and high hemoglobin levels may reflect an increased risk of amyloid β accumulation in the brain. Additionally, we demonstrated that these biomarkers could enhance the effectiveness of APOE as an AD biomarker. This study reveals that the combined assessment of serum folate levels and red blood cell hemoglobin content may be a useful biomarker for amyloid β accumulation in the brain. We also found that the combination of serum folate levels and hemoglobin content is a more specific and sensitive blood biomarker for AD than APOE or folate alone. These findings may be used to support clinical diagnosis of AD using a simple blood test.
منابع مشابه
P 131: Connection Process Inflammation and Improvement Alzheimer’s Disease
Platelet aggregation beta amyloid main causes inflammation of neurons in Alzheimer’s disease. In fact, creating this inflammation due to inappropriate actions in blood brain barrier (BBB) and astrocyte and microglia during the last century that studies conducted in this case nothing has been found. The only thing that can be done to prevent and reduce pro-inflammatory factors such as cyto...
متن کاملNutritional anemias in pregnant women
the aim of this cross sectional study was to determine anemias due to deficiency of iron,vitamin B12 and folate in pregnant women,who were refered to Shahid doctor mofateh hospital in varamin.in this study hemoglobin value(<11g/dl) was used as the determinant of anemia,therefore,the study was performed on 251 pregnant women.the proportions of women having abortions and cesarean sections were 10...
متن کاملImprovement of Learning and Memory Deficits With Aerobic Training and Donepezil Co-therapy in Amyloid-β Injected Male Rats Through the CREB And BDNF Signaling Pathway
Background: Accumulation of amyloid-β (Aß) plaques, primarily in the hippocampus, leads to neuronal death and Alzheimer disease. Exercise and medications can prevent and treat neuronal diseases. This study aimed to determine the effects of aerobic training and donepezil, a medication used in Alzheimer disease, on the improvement of learning and memory deficits in Aß-injected male rats. Methods...
متن کاملEffect of Long-term Exposure to Extremely Low-frequency Electromagnetic Fields on β-amyloid Deposition and Microglia Cells in an Alzheimer Model in Rats
Background: Recently, researchers have considered extremely low-frequency electromagnetic fields (ELF-EMFs), as one of the non-invasive therapies, in the treatment of many severe neurological disorders, including Alzheimer Disease (AD). AD is a progressive neurodegenerative disease characterized by the deposition of amyloid plaques in the brain. However, the increase in microglial cells increas...
متن کاملHuman chorionic gonadotropin attenuates amyloid-β plaques induced by streptozotocin in the rat brain by affecting cytochrome c-ir neuron density
Objective(s): Amyloid β plaques, in Alzheimer’s disease, are deposits in different areas of the brain such as prefrontal cortex, molecular layer of the cerebellum, and the hippocampal formation. Amyloid β aggregates lead to the release of cytochrome c and finally neuronal cell death in brain tissue. hCG has critical roles in brain development, neuron differentiation, and function. Therefore, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017